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Swarm formation and swarm flocking may conflict each other. Without explicit communi-
cation, such conflicts may lead to undesired topological changes since there is no global
signal that facilitates coordinated and safe switching from one behavior to the other. More-
over, without coordination signals multiple swarm members might simultaneously
assume leadership, and their conflicting leading directions are likely to prevent successful
flocking. To the best of our knowledge, we present the first set of swarm flocking algo-
rithms that maintain connectivity while electing direction for flocking, under conditions
of no communication. The algorithms allow spontaneous direction requests and support

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Coordinating motion, cooperative formation, and flock-
ing control of multiple autonomous entities is of great the-
oretical and practical interest. One (now classical) approach
is Reynolds’s Boids [13], where each entity updates its
movement based on the distances and velocities of neigh-
boring entities in order to ensure the alignment and cohe-
sion of the swarm while avoiding unsafe distances
between the entities. The three corresponding behavioral
rules that each entity follows indeed address many practi-
cal situations, however there are still several pathological
cases where partition of the swarm is possible. For example,
if it happens that all entities move exactly towards (or away
from) their center of mass, no convergence to stable flock-
ing can occur and it becomes impossible to break the sym-

* Research supported in part by the ICT Programme of the European
Union under Contract No. FP7-215270 (FRONTS), US Air Force European
Office of Aerospace Research and Development, Grant No. FA8655-09-1-
3016, Microsoft, Deutsche Telekom, European project FLAVIA, Israeli
Ministry of Industry, Trade and Labor (consortium CORNET), and Rita
Altura Trust Chair in Computer Sciences.

* Corresponding author.

E-mail addresses: ben-shahar@cs.bgu.ac.il (O. Ben-Shahar), dolev@
cs.bgu.ac.il (S. Dolev), dolgin@cse.bgu.ac.il (A. Dolgin), segal@cse.bgu.ac.il
(M. Segal).

1570-8705/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.adhoc.2012.05.001

metry without using randomization. In this paper, an
intrinsic bounded random variable is indeed incorporated,
though its primary use goes beyond symmetry breaking,
handling leadership election when no explicit information
exchange is allowed between the swarm'’s entities.
Clearly, convergence of a swarm motion while avoiding
topological changes like partitioning is possible using expli-
cit (e.g., wireless) communication, and indeed early work
has explored such solutions, in particular when the commu-
nication is employed in a predefined time interval [5,14,18].
Later work relaxed the defined time interval to variable-
length intervals [4,8,10] or employed probabilistic networks
[17]. However, unlike previous work, we seek to solve these
problems in “silent networks”, where there is no explicit
communication between the swarm members beyond pas-
sive observation (of position, motion, etc.). Furthermore, un-
like much of the previous work, we are also interested in
maintaining robust convergence results despite uncertain-
ties in both the measurement and execution of motion. All
these conditions mimic constraints of artificial swarms.
Much work on the stability and convergence of flocking
in silent swarms has been based on the use of potential
functions. Doing so, several algorithms and convergence re-
sults have been obtained for different flocking mechanisms
and various connectivity assumptions (e.g., [6,11,12,19]).
While most effort was put to investigate leaderless
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swarms, some research has extended this scope, present-
ing potential field algorithms for safe, connectivity-pre-
serving flocking in the presence of a single leader.
However, thus far no potential function that guarantees
the desired flocking behavior (and in particular, collision
avoidance and connectivity preservation) when multiple
leaders may co-exist, is known. Still, the case of multiple
leaders has been considered in several studies, typically
employing local rules and information passing between
neighbors [15,7]. Only few recent papers study the prob-
lem in the scope of "silent networks”. For example, Jiang-
Ping and Hai-Wen [7] show that all agents will flock in
the polytope region formed by the leaders. Su et al. [16]
have studied the case of a fixed set of leaders and showed
how the swarm will steadily converge to the dynamical
center of mass of the leaders. While suitable under specific
assumptions (e.g., symmetry does not exist) for solving dif-
ferent agreement problems like swarming, schooling,
flocking, or rendezvous, existing methods do not support
direction election. Furthermore, the majority of previous
works bear on a strict assumption that connectivity is pre-
served and collisions between entities are avoided all the
time, while no technique to satisfy these properties is
described.

An important issue related to flocking swarms is their
temporal convergence rate to a stable configuration. Re-
sults on this problem have been obtained by Chazelle in
[1,2], who showed an exponential time bound for the con-
vergence of the motion of a single entity to a fixed motion
vector. Furthermore, the time bound for the convergence
of the entire swarm was shown to be an iterated exponen-
tial of height logarithmic in the number of agents. Since the
flocking rules in our model are superset of the rules in the
model of Chazelle [1,2], we suspect that the convergence
rate (denoted later by T) proved in [1,2] is an upper bound
on convergence rate in our model.

In this paper we present (what we believe are) the first
practical and provable flocking schemes with silent direc-
tion election from several candidate leaders. We develop
simple and efficient algorithms for silent direction election,
taking into account (bounded) environmental and paramet-
ric uncertainties, while providing a mechanism for connec-
tivity preservation and collision avoidance. These latter
capacities are obtained by introducing the notion of a spring,
which resembles a potential function with restrictions and
provides flexibility in the presence of uncertainties. The
same mechanism also withstands temporary coexistence
of multiple leaders. We do note that although direction
election techniques do exist in the context of mobile robot-
ics [3,9], these methods assume explicit communication be-
tween entities, which is outside the scope of our study.

The rest of this paper is organized as follows. Section 2
briefly describes basic settings and definitions. Section 3
describes the intuition behind our new spring network ap-
proach and proves its effectiveness for direction election in
autonomous mobile swarms under uncertainties, assum-
ing initial connectivity of swarm entities. Section 4 de-
scribes a method for monitoring of swarms motion by
every entity and an alternative direction election approach
based on it. Conclusions appear in Section 5.

2. Swarm settings

We begin our theoretical discussion with several defini-
tions and notions, the first of which relates to the different
swarms configurations that may be considered in the con-
text of flocking. In particular, we will first consider synchro-
nous swarms, where all entities perform their
measurements at the same points in time based on one glo-
bal clock. We will then move to discuss partially asynchro-
nous swarms, which relax the synchronous swarms
assumption to allow each entity to perform its measure-
ments and motion updates after some arbitrary time phase
relative to global time pulses (as the local clocks measure
time periods in the same rate but are not synchronized to
hold the same global time). We note that the case of asyn-
chronous network, where each entity has its own indepen-
dent clock and cycle duration, is not considered here.

Definition 2.1 (Cycle). Cycle duration dt is a unit of time
used by all entities for their measurement and position
adjustments.

A period is a sequence of numbered cycles starting from
1, and its size is measured in time slots. As we emphasized
in the Introduction, the focus of this paper is silent swarms,
i.e. network of entities without explicit communication of
information transfer. In particular, the only measurement
allowed for different entities is the position of neighboring
entities. Let r; be the position vector of entity i. We there-
fore define:

Definition 2.2 (Distance). Let r; and r; be the position
vectors of entities i and j, respectively. The distance r;
between the two entities is therefore defined as the
Euclidean norm of the corresponding difference vector ry,
ie. [|ri —rjll.

Due to the measurement errors, the measurement
made by entity i for the distance to its neighbor j may be
different from the real value ry.

Definition 2.3 (Measured distance). Let r}" and r]'.“" be the
position vectors of entities i and j, respectively, measured
by entity i. The distance r}}“ between the two entities is
therefore defined as the Euclidean norm of the corre-
sponding difference vector rii", i.e. || —r}"||.

To better support practical applications, we do allow
some uncertainty in distance measurements and the exe-
cution of motion commands, and, in particular, we assume
that distance measurement errors (compared to the true
distances) are bounded by a known constant, which in-
cludes all possible noise sources, such as a randomization
used in all the algorithms for symmetry breaking, etc.
Formally:

Definition 2.4 (Error). Error e; is the difference between
the measurement made by entity i for the distance to its
neighbor j and their actual distance, i.e. e; = r{" — r;j + RV,
where RV stands for a random variable value, bounded by a
predetermined constant, which is used to break possible
pathological symmetry position of entities. The error is
bounded by some known constant e, i.e. |e;| < e Vi, j.
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Given a swarms of entities, one may associate a graph
topology based on distances. In particular, we define the
maximum distance, under which entities can be consid-
ered connected (or neighbors in the swarm graph), and
the minimum distance, under which the safety of entities
is compromised.

Definition 2.5 (Connectivity limit). Connectivity limit R
between two entities is the maximal distance, where those
entities are considered connected to each other (e.g., by
visibility).

Definition 2.6 (Proximity limit). Proximity limit r between
two entities is the minimal safety distance that prevents
the entities from collision.

Of course, the connectivity limit entails a neighborhood
relationship between entities, i.e.

Definition 2.7 (Neighbors). The set N(i) of all neighbors of
entity i is the set of all entities whose distance from entity i
as measured by entity i does not exceed the connectivity
limit value R, i.e. rg.“ <R

In order to obey behavioral rules such as Reynolds’
cohesion and separation, we propose to describe the inter-
action between swarm neighbors via the following intui-
tive mechanism: two neighboring entities i and j, such
that i € N(j) and j € N(i), are connected by (virtual) spring,
which applies force on its end points (i.e. the entities)
based on its length. Formally,

Definition 2.8 (Spring). Spring is a virtual structure con-
necting any two neighboring entities. Spring size, mea-
sured by entity i, equals the distance r;“ between the two
entities i and j, where r < rg.“ < R. This important property
of the spring states that it can neither stretch above R, nor
shorten under r. Each pair of entities i,j that become
neighbors (i.e. i € N(j) and j € N(i)) obtains a spring. The
force that the spring applies on its ends is proportional to
its size, i.e. the force on each end is equal to
(rf" = (R+1)/2)/2 and (ry" — (R+71)/2)/2, so the spring
attains its equilibrium state in the middle between R and r.

Note that the definition above does not necessarily mi-
mic a physical spring. However, regardless of the implemen-
tation, the force applied on each entity by its springs affects
it velocity, which one can define in the standard way, i.e.

Definition 2.9 (Velocity). The velocity v of entity i is the
time derivative of its position vector »/" =" and it is
assumed to be constant within a cycle.

Finally, we note that one of the main purposes of the
algorithm described in the bulk of this paper is to preserve
initial connectivity of the swarm network. We therefore
define.

Definition 2.10 (Connectivity). Let G(V,E) be the graph
whose nodes are the swarm entities and the bidirectional
edges are the swarm bidirectional springs (both entities on
the end of the spring are aware of its existence). The swarm
is said to be connected if its corresponding graph is
connected.

Definition 2.11 (Non-critical starting point). Non-critical
starting point is a sufficient condition to start using
direction  election algorithms. It states that
Vi,jli € N(i),r + 2e <1 <R—2e that is all the entities
are on the safe distance from each other, and also the
swarm is connected.

3. Direction election in silent swarms
3.1. Synchronous systems

Leadership of an entity in silent swarms can only be
achieved once we violate the basic Reynold’s rules. How-
ever, such arbitrary motions should be done with care in
order to avoid changes to the connectivity (or more
strictly, the graph topology) of the swarm. We begin our
investigation of how this can be done in synchronous
swarms, where all entities share the same global clock
and all perform their distance measurements at the same
time (but otherwise exchange no other information by
any other means). The main advantage of a synchronized
system is that by carefully assigning time slots to the enti-
ties we avoid a situation when any two would try to lead
simultaneously. Notice that in our solutions once entity i
sees entity j and entity j sees entity i, both entities will
never lose a bidirectional connection between them.

3.1.1. Leadership in flocking swarms

By Definitions (2.9) and (2.1), the velocity between sub-
sequent measurements is assumed to be constant. We ob-
serve that when an entity j decides to lead, it may move a
distance of at most (R—rgf’i)/z —2e in the direction of
stretching each one of the springs connected to it, and
(rg“ —1)/2 — 2e in the direction of shortening the springs.
We note that the halving distance is necessary because i's
neighbor on the other end of a spring may decide to lead
simultaneously (this may happen in semi-synchronous
model described later). For the same reason, the error
bound e is doubled in all the equations. Hence, in order
to make the movement in the desired direction DIR;, the
leader must obey

minext

e r}"" + min(ST,SH) - DIR; (1)

where

ST < min((R — r}?")/2 — 2e) - u; - DIR; (2)
JeN(i)

is the minimal move among all neighbors of entity i in the
direction of stretching the spring (u; is the unit vector in
the direction of stretching the spring between entities i
and j), and

SH = min((ri" —r)/2 - 2e) - u; - DIR; (3)
JeN(i)

is the minimal move among all neighbors of entity i in the

direction of shortening the spring. Recall that e is the error

bound on the measured distance of neighboring entities,

and N(i) is the set of neighbors of entity i. Since this policy
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is maintained by all pairs of neighboring entities, we are
guaranteed that springs do not stretch over the connectivity
limit R and at the same time do not shorten below the prox-
imity limit r, assuming a non-critical starting point. Hence,
the swarm remains connected and safety distances are
maintained at all times.

Naturally, entities that do not wish to lead, should sim-
ply follow the regular Reynolds rules. Formally, in our
spring system, this can be expressed in the following
manner:

mext

it e d Y w1 - (R+1)/2)/2

JeN(i)
+dty " oM =" Correction, r/f, (4)
jeN() i
where
Correction{ = max[O,Short{,Stretchf] (5)

is the correction in the direction from r/U”T’ to entity’s i
movement in order to prevent the spring between entity
i and entity j to shorten below r or stretch above R. Here
we defined the shortening and stretching spring violations
as

Short] =+ (= 1)/2 = I — 17" +2e (©)

. next
Stretch] = |r§”" - rj'.“"| —(R-(R- rg.“)/Z) +2e (7)
This way we make sure that entities from both ends of the
spring will correct their movements in order to prevent
violation of the spring Definition 2.8.

While the above set of behavioral rules for leaders and
non leaders guarantees that no bidirectional edges in the
swarm graph are being disconnected, it does allow the for-
mation of new edges. Formally, each swarm member
should update its neighborhood set at all cycles by
executing

Vi > R = N™(i) — N(i) — {j}
Vj i <R = N""(i) — N(i) U {j} (8)

Notice, that Eq. 8 is applied only on directed links. It is
never applied on bidirectional links.

3.1.2. Direction election in swarms with labeled entities

With the basic motion rules for leaders and non leaders
formulated above, we are now ready to deal with direction
election. Assume first that all the entities in the swarm are
labeled and aware of their identity. In such cases, entities
can be numbered and ordered by total ordering, and each
entity can then be allocated unique time slots in which
only it may become a leader. Let ORDER; be the label
of entity i. For fairness, this time slot allocation can
be done via round robin, using the global clock T&
to allocate T consecutive cycles to entity i, such that
ORDER; == (T#**'mod) + 1, and T is the convergence rate
of a swarm. It is an intrinsic constant in all algorithms pre-
sented below that is used to represent time slot duration.

Following the previous subsection, we hence obtain the
following algorithm:

Algorithm 3.1. Direction election for entity i who wants to
lead in flocks with n labeled entities

1: forcycle=1,...,PT do

2: if ORDER; == |(cycle — 1)/T) + 1] then lead
according to Eq. (1)

3: else obey Reynolds rules according to eq. (4)

4: update neighbor list according to eq. (8)

5: end

6: go back to step 1.

Note that convergence rate properties are directly
dependent on the constant T. In order to provide each lea-
der with the best possibility to move in any desired leading
direction, we may first wait until all the springs in the sys-
tem are near their equilibrium. Note that this is the optimal
position to allow each leader to move in any desired direc-
tion, since the equilibrium state of each spring is in the mid-
dle between r and R. So, we divide the time slot of duration
T into 2 parts: one for spring network convergence to equi-
librium state, and the second for leadership itself. Naturally,
entity that does not want to lead in its designated time
slots, simply obeys Reynolds rules according to Eq. 4.

Bidirectional springs are only allowed to be formed, but
they are never removed under the direction election algo-
rithm. Since the initial swarm graph is assumed connected,
and the connectivity is defined on bidirectional springs
only, then connectivity is preserved. Collisions are avoided
by the definition of the unidirectional and bidirectional
spring, which cannot become shorter than the proximity
limit distance. Using this reasoning, we can state the fol-
lowing theorem:

Theorem 3.1. The initial connectivity of a swarm is pre-
served and collisions between all entities are avoided under
the direction election Algorithm 3.1, i.e. there is a path of
springs connecting any pair of entities of a swarm during any
stage of the algorithm.

The time of starting the leading period for each entity is
predetermined by its label, i.e. by its sequential number.
Such a leader will lead starting from its first designated
time slot for a duration of T cycles, a time at which the
leading opportunity is passed to the next entity. Since
the equilibrium state of all springs is in the middle be-
tween R and r, then any leader will obtain the possibility
to move during its leading time slot, when it leads alone.
Hence, we obtained the following result:

Theorem 3.2. Direction election algorithm will cause swarm
members to move in a single leading direction for periodic
time slots of duration T cycles.

3.1.3. Flocks of unlabeled entities

Assume now that the swarm consists of identical unla-
beled entities which cannot be ordered. Clearly, while
leading slots cannot be allocated deterministically in this
case, entities can randomly choose their leading slot.
However, this random selection should be done with care
to ensure a similar fair chance to all entities to lead, and
to prevent two entities from leading at the same time.
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In our proposed solution, each entity runs the standard
direction election algorithm for flocks with labeled entities,
when a sequence of numbers ORDER; is randomly gener-
ated from the uniform distribution on the range
(1,...,P), where P is the predetermined size of a period,
whose optimal choice is described in Eq. (11).

Algorithm 3.2. Direction election for entity i who wants to
lead in flocks with n anonymous entities

1: Uniformly generate ORDER; on the range [1,P]
for cycle=1,...,PT do
if ORDER; == |(cycle — 1)/T) + 1] then lead
according to Eq. (1)
else obey Reynolds rules according to Eq. (4)
update neighbor list according to Eq. (8)
end
go back to step 1.

w N

UE2 LN

Clearly, connectivity is preserved again and network
topology is never reduced, hence we obtain:

Theorem 3.3. The initial connectivity of a swarm is pre-
served and collisions between all entities are avoided under
the direction election algorithm, i.e. there is a network of
bidirectional springs connecting any pair of entities of a
swarm during any stage of the algorithm.

However, as is, the selection of ORDER; allows a small
number of time slots, where multiple leaders compete for
leadership. In such time slots, the swarm will flock accord-
ing to the average of the leader directions [16].

Theorem 3.4. Direction election algorithm will cause the
swarm to follow a single leader for periodic time slots of
duration T with predetermined probability, given the period
duration P, where each entity can take leadership.

Proof. By construction, the leading starting time of each
entity is distributed uniformly in the range 1, ..., P. Let
us first assume that a particular slot is selected by a single
entity. Then, such a leader will lead by itself, starting from
its time slot onward and until the slot of a next potential
leader begins. Hence, in such a case, a single leader is
elected and stable flocking of the swarm is achieved for
time slot of duration T.

Of course, it is critical to understand how likely it is for
any single candidate leader to find itself selecting a leading
slot without conflicting with others. The number of ways
to distribute k different entities into P different slots,
where maximum a single entity is allowed in any slot is
P(P—-1)...(P—k+1). The total number of ways to dis-
tribute n different entities into P different slots is P". Let us
assign Numberﬂggfng to the number of entities that lead
alone during the period P. So, the probability that this
number is at least k is:

Prob(Numberig:, > k)

n—k
:P(P—l)...(P;i<+1)(P—l<) )

Increasing P for given n also increases the probability,
due to the fact that limp_..Prob(Numberjog. > k)) = 1.
Let us assume that Prob(Numberjeg, > n) = 1, where ¢
must be determined for each system, as stated below. Then,
obviously, log,; 4, (1) sequential periods are needed to
obtain the probability of any particular entity out of n to

lead alone approximately approaching unity. [

Fig. 1 gives an example of the increasing probability of
all the entities leading alone as a function of the period P
duration in this case, for number of entities n=1...20.
For the case of n =1 the probability is exactly 1, and it
drops down as n increases.

In order to choose the period length P consider the fol-
lowing argument:

log Prob(Numberig. > k)

=logP(P-1)...(P-k+1)
+ (n —k)log(P — k) — nlogP
> nlog(P — k) —nlogP

P
= — — > -
nlogP_k > —loggq (10)
Furthermore, one can choose P according to

kq

P>
g1

(11)

We should choose k = n, since this will reduce the total
number of periods needed, as for larger k the lower bound
for P in Eq. (10) is less strict.

In order to choose the last unknown variable q in Eq.
(11) we need to solve the following optimization problem:

g -

Taking the derivative of the minimization function with
respect to q we realize that it vanishes at a single minimum
of the minimization function (see Fig. 2), which is the de-
sired optimal value.

.. nqn
minimize, [log(l/aq)) (n) %} (12)

N

o o o
> o ©
T

Probability of every entity to lead
alone during period P
o
N

0 A i i i i
20 40 60 80 100 120 140 160

Period duration P

Fig. 1. Probability of all n entities leading alone vs. period duration P,
n=1...20.
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Fig. 2. Derivative of the minimization function with respect to g, n = 10.

Fig. 2 gives an example of the derivative of the minimi-
zation function with respect to g, for number of entities
n=10.

3.2. Semi-synchronous networks

Consider a relaxed version of our synchronous network,
in which time slots of different entities are allowed to have
unknown, but bounded size, phase shifts. We argue that
the direction election algorithm for flocks with labeled
entities 3.1 described in subsection 3.1 as well as direction
election algorithm for flocks with anonymous entities de-
scribed in subsection 3.2 work when no synchronization
between entities exists, while an additional synchroniza-
tion part in time slot T should be devoted, in order to pre-
serve the probabilistic properties of these algorithms. So,
the structure of the time slot T contains now: the conver-
gence part, as earlier, the synchronization part that is equal
to the maximal allowed phase shift, and the leading part.

Indeed, allowing entities to lead only after the addi-
tional synchronization part of the time slot T, we obtain
the leadership for duration T, while no two entities with
different ORDER; values can compete for leadership. In
addition, Eq. (5) implies that no spring violations can occur
when cycle size dt is constant among different entities and
only the measurement time starts with a different phase.
But note that this situation is covered by the synchronous
case, since here the maximal possible movement size is
less than the similar quantity in the synchronous case.

Theorem 3.5. Direction election algorithm 3.1 preserves
connectivity and avoids collision between entities for partially
asynchronous systems.

Proof. We show that by running the synchronous direction
election algorithm in partially asynchronous system no
violation of the spring Definition 2.8 happens. Here, each
entity performs its measurements with the same time
periods dt, but with different starting time phase. In
particular, let us assume, without loss of generality that
entity i performs its measurements at time sequence

{0,dt,2dt, ... kdt, ...}, while entity j performs its measure-
ments at time sequence {ph,dt+ ph,2dt+ ph,... kdt+
ph, ...}, where 0 < ph < dt stands for the phase shift of
entity j. Phase shifts may affect the algorithm only in two
situations: when making a movement as a leader, and while
obeying Reynolds rules. In both cases, the maximal
movement for entity i starting at time 0 is (R — r?") /2 in
the direction of stretching the spring between i and j, and
(rl.T" —1)/2 in the direction of shortening the spring
between i and j, where rZﬁ' is the length of the spring at time
0 measured by entity i. By Definitions (2.9) and (2.1) the
velocity between subsequent measurements is assumed
to be constant. Thus, until the time ph entity i passes a
distance of

st :Z_ftl(Rfr?f)/z (13)

in the direction of stretching the spring between i and j,
and

P/ 0

when it takes the direction which shortens the spring.
Then, entity j makes its movement, according to the mea-
surement at time ph. Entity j made until the time dt a dis-
tance of exactly

st (e 2 09

in the direction of stretching the spring between i and j,
or

r B (oo

unit distance if it takes the direction which shortens the
spring. Thus, at time dt, after a complete cycle of entity i,
the difference between R and the maximal length of the
spring between i and j is

Nvdt — R _ Ld[

(/)2
> (R-11)/2 - <{R—%(R—rg?")/2} —r?")/Z

PR s s (17)

It means that the length of the spring between i and j is
less or equal to R for this case. Also, at time dt, after a
complete cycle of entity i, the difference between the
minimal length of the spring between i and j and r is
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dt _ ldt

nv -T

= r:.}“ - (rZ?" —1)/2

7¥<{rg’f—Z—?(r?"—r)/Z}—)/Z—r
> (- 1)/2 - ({r?f—lé—?(r?f—r)/z}—)/z

:Izi—itl(r?f -nN/4=0 (18)

Thus, the spring’s length between i and j is larger than
or equal to r for this case.

Proceeding by mathematical induction, the spring size
between i and j is less than or equal to R and greater or
equal to r after any number of cycles. The same is true for
all other springs in the network, since the spring between i
and j has been chosen arbitrarily. O

Theorem 3.6. Given P, direction election Algorithm 3.1 will
make the swarm follow a single leader at least k times in a
period P for periodic time slots of duration at least T with pre-
determined probability.

Proof. A time of starting the leading slot for each leader is
uniformly generated upon the range 1, ..., P. Such a leader
will lead alone starting from its time slot on, until the next
leader in the sequence wants to lead. Hence, single leader
is elected and stable flocking of the swarm is achieved for
time slot of duration T. The probability that at least k enti-
ties lead alone is equal to the probability in Eq. (11), since
exactly the same probabilistic rule is applied in this case.
Since the equilibrium state of all springs is in the middle
between R and r, then after the spare part of the time slot
T, dedicated for spring network convergence, all the
springs will stay near their equilibrium in the middle
between r and R. Then any leader will obtain the possibility
to move during its leading time slot, when it leads
alone. 0O

3.2.1. Real semi-synchronous networks

In the semi-synchronous networks, entities can start
counting period P at different times. The liveness of an algo-
rithm ensures that all system constraints stay inviolated
when algorithm is applied to the system. The next theorem
shows that synchronous direction election algorithm 3.1 is
also applicable for this case.

Since the statement of liveness for networks with non-
synchronized clocks Theorem 3.5 and its proof do not de-
pend on the period starting time, we obtain:

Theorem 3.7. Liveness for networks with nonsynchronized
clocks Theorem 3.5 is applicable for semi-synchronous
networks.

Theorem 3.8. Progress for synchronous network with time
shift Theorem 3.6 is applicable for semi-synchronous
networks.

Proof. Let us assume without loss of generality that entity i
starts counting its period P from a time t = —&. Its ORDER;
value is uniformly distributed on the range [1 —¢,P — ¢]
that is Prob(ORDER; = 0,0 € [1 — &,P — ¢]) = §. Immediately
after the period of duration P, another period of duration
P starts, where ORDER; value of entity i is also uniformly dis-
tributed that is Prob(ORDER; =m,m € [P —¢,2P —¢]) = 1.
Then ORDER; value of entity i must be uniformly distributed
on the range [1,P]. Indeed, Prob(ORDER; = q,q € [1,P]) = 5.
The same is true for every entity in the system. Since the
only assumption on period P was the uniform distribution
of ORDER; value of each entity on the range [1,P] in the
statement and the proof of theorem 3.4, then it is also
applicable for Semi-synchronous Networks. [

4. Monitoring and leader following

Let us show that all the proposed direction election
algorithms allow all flock members monitor the movement
of the swarm in the leadership direction, while they per-
form fast convergence to the leader velocity. We base this
conclusion on the fact that the movement of the center of
mass of the system is affected by leading external force
alone, while all other internal forces in the system cancel
each other. This reasoning will bear on the symmetry prop-
erties of any heavily populated network around its center
of mass.

It can be realized that due to the possible measurement
errors, the newly created network edges may not be bidi-
rectional. In this situation, these new edges can be broken
by the unawared neighbor. Note that this case is not worse
than the case without the newly created directed neighb-
orship as the connectivity is maintained by the links for
which both endpoint entities measure distance less than R.

For heavily populated networks, a reasonable assump-
tion one can make is that entities are located uniformly
around the center of mass of the system. Due to this fact,
we obtain symmetry properties regarding the unidirec-
tional springs formation in any direction in the system.
These properties lead to the conclusion that in the case
of a single leader the overall additional external force in-
duced by the unidirectional springs vanishes. So, practi-
cally, only the leading force is applied to the center of
mass of the system.

To conclude this elementary case, we do note that an
upper bound for the convergence rate of a swarm to a sin-
gle leader may permit slight deviation from the exact
speed and direction of the leader. Furthermore, in many
practical situations, explicit convergence of all entities to
the exact velocity of the leader is not crucial, but the move-
ment of the swarm’s center of mass in the direction of a
leader, up to a small predetermined deviation, is sufficient.
While the limits r and R are not approached, which is pro-
hibited by the spring definition, the center of mass of the
swarm is given under the external leading force only, as
stated above. In this ideal case, the convergence of entities
to the approximate leader velocity (up to an error) will
happen immediately, because they are given under the sin-
gle leading force only. Due to the real system symmetry
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Fig. 3. Relative error bound change with time.

imperfections, the convergence should take time, which
might be polynomial in heavily populated networks.

In Fig. 3 the leader applies the leading force F for the
time t; until the velocity of the flock attains the desired va-
lue. Another entity is moving between the most extremal
possible positions under the influence of internal forces
in the network. Still, the measure of self velocity of this last
entity converges to the velocity of center of mass as time
passes.

While using the spring network abstraction, real masses
and, therefore, accelerations of different entities are not ta-
ken into account, but only their effective values and inter-
entity distances. The movement of a particular entity is
limited only by its physical characteristics. Let us assume
that due to physical limitations the maximal allowed
acceleration is amqy, SO that the maximal force each entity
can apply is limited by F and its effective mass is thus
M. Here, F = Mgyapme. Recall that only the leader’s force
affects the center of mass of the system. Using this fact,
our algorithm allows monitoring of movement of the
swarm in the desired direction by all its members. Indeed,
from Fig. 3 we conclude that the relative angular error in
the leadership direction measurement by any entity is
bounded by % where X is the maximal deviation of an en-
tity from the center of mass, and L is the way passed by the
center of mass in the direction of the leadership. We note
that the relative error decreases with increase in L. Let us
assume the total mass of the network to be one unit. By
regular laws of accelerated motion,

L = Vot + Ft2 + Viadert (19)

where V" is the desired leadership velocity. X by itself is
bounded by nR, since no spring can stretch beyond R by
definition. Hence, the relative angular error is bounded by
2nR _ 2nmR
leader ¢ "y /lead
Ft% + Vea ert Vea ert

(20)

Thus, after a predetermined time period each entity can in-
fer the leadership direction and speed, up to a known error
bound.

The stated above possibility of monitoring the leading
direction by every entity gives an opportunity of the most
wanted direction election (which has been chosen majority
of entities during the algorithm) by among different lead-
ing directions. All the potential leaders may be allowed
to lead simultaneously for a given period of time, while
monitoring. After this time period, swarm'’s velocity will
attain, up to a bounded error, the most wanted velocity
direction among all leaders. So, the leader with closest
leading goal (in other words, the leader with the direction

that is closest to the most wanted direction) will obtain the
maximal possibility to lead.

Clearly, the algorithm outlined so far would operate in
the presence of multiple leaders, but it does not guarantee
that these leaders would not conflict each other to stall the
swarm as a whole or to act in a diverging behavior forever.

5. Conclusions

In this work we enhance Reynolds Boids rules to enable
symmetry breaking, handle measurement errors and sup-
port direction election. We prove correctness and believe
that the schemes presented can be used in practice. The
constant value T that is used in our algorithms can be
experimentally (or using simulations) measured for the
specific swarm settings; as we pointed out we suspect that
the value of T proved in [1,2] is an upper bound on conver-
gence rate in our model. The algorithms presented can be
tuned for the cases in which various threats or flocking
goals with different urgencies coexist in the system. To ad-
dress this scenario we can introduce priority mechanism.
The priority variable Np will have a predetermined scale
of values, dividing the priority to different scenarios pres-
ent in the system. Then, direction election is influenced
by the priority value of each entity. For this scheduler,
we have that for a random generation of ORDER; a period
of P is multiplied by the priority category number Np, start-
ing from Np = 1 for the highest priority.

The priority of each entity should be calculated asyn-
chronously at the time of an appropriate scenario arrival
to the entity. Each entity would perform such priority cal-
culations all the time according to a predetermined for-
mula. At this moment, new period starts for this entity,
and the period duration for it is influenced appropriately.

Using the following reasoning, we argue that all pre-
sented direction election algorithms will preserve their
properties under this new priority scheme. In particular,
they will make the swarm to follow a single leader for peri-
odic time slots of duration T with arbitrarily high predeter-
mined probability, since the time of starting the leading
time slot for each leader is uniformly generated upon the
range 1,...,NpP. Such a leader will lead alone starting from
his time slot on, until the next leader in the sequence
wants to lead. This may happen when another leader was
previously scheduled or the priority scheduling took place.
So, single leader is elected and stable flocking of the swarm
is achieved, for time slot of duration T.

Also, the probability that at least k entities lead alone is
greater or equal to the probability in Eq. (11), since exactly
the same probabilistic rule is applied in the case, where all
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entities have equal priority, otherwise, the probability is high-
er, since the number of entities in each period P is less than n.
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